

Is this for real? Five 4"x4" two layer boards for two bucks?

Learn More >

Quote Now

Goal

The main goal of the class is to show that anyone can take a little time, design a board and order it.

Brady Pamplin

brady pamplin@hotmail.com

High-Level Tasks

- 1. Design schematic
- 2. Convert to PCB
- 3. Arrange components
- 4. Route signals
- 5. Design rule check, look at 2D & 3D renders
- 6. Order PCBs

Exercises

Create an account at EasyEDA

Exercise 1: Place and connect a few random parts

Exercise 2: Download schematic parts not placed

Place and connect schematic parts

Exercise 3: Continue or download schematic complete

Run Design Rule Checker

Convert schematic to PCB

Place PCB parts

Try manual routing

Unroute All and run Auto Route

Exercise 4: Continue or download PCB complete

Fabrication / PCB Fabrication – No Generate Gerber

One Click order

Getting Started

EasyEDA documentation

https://docs.easyeda.com/en/Schematic/Canvas-Settings/index.html

Class is based around this YouTube:

https://www.youtube.com/watch?v=gCwibH1YeiY

Chrome browser is recommended

Create an account at https://easyeda.com/

For class, choose EasyEDA Designer / STD Edition

File / New Project
Click frame to set paper size
600x500 is good for small diagrams

Links

Exercise 2: class_sch_parts_not_placed

 $\frac{\text{https://u.easyeda.com/join?type=project\&key=71c6ec33d120dc9745af5f42da2f26a6\&inviter=e7e846ad3f354077ad8104a09}{\text{db976dd}}$

Exercise 3: class_sch_complete

 $\frac{\text{https://u.easyeda.com/join?type=project\&key=498ae6466712a53f6416b54ff4ac099d\&inviter=e7e846ad3f354077ad8104a0}{\text{9db976dd}}$

Exercise 4: class_final

 $\frac{\text{https://u.easyeda.com/join?type=project\&key=32c762f5c18bbefb5ebe82147a485470\&inviter=e7e846ad3f354077ad8104a0}{9db976dd}$

Links

555 simulation

 $\frac{\text{https://u.easyeda.com/join?type=project\&key=17bb2d917e8a067d7e9efd856bf73a60\&inviter=e7e846ad3f354077ad8104a0}{\text{9db976dd}}$

555 ordered bp4

 $\frac{\text{https://u.easyeda.com/join?type=project\&key=3509ccaefa7686eab2e3c00743bcceb9\&inviter=e7e846ad3f354077ad8104a0}{9db976dd}$

Component Modules

One or more of the following

- Schematic diagram image
- Footprint for PCB
 - Through hole or surface mount
- 2D View
- 3D View
- Simulation

Main Layers of a PCB

Top Silkscreen – Text Top Solder Mask

Top Copper – Red Board – Fiberglass – 1.6mm Bottom Copper – Blue

Bottom Solder Mask Bottom Silkscreen - Printing

Exercise 1:

Place and connect a few random parts

on the schematic screen

File / New Project

Select Commonly Library on left toolbar

Left click a part – do not drag. Left click to place. Right click to end placing the part.

Escape key may not work as expected but Ctrl-Z to Undo works great.

Space bar to rotate
X to reverse horizontal
Y to reverse vertical

Exercise 1: Wiring and Drawing Tools

File / New Project

Exercise 1:

Component Properties Table

Display Name and Prefix can be modified by clicking the text or by changing the table entry,

Exercise 2: Prepare the Schematic

Exercise 2:

Move parts into position

Rotate as required

Change text and values in schematic and table on right

Exercise 3: Place parts and Route

Exercise 3:

Use your schematic file or download schematic complete file Run Design Rule Checker

Convert schematic to PCB with Design/ConvertSchematic to PCB – only once If you move back to schematic, move forward with Design/Update PCB Place PCB parts

Text on top silkscreen

Try manual routing

Unroute All

Auto Router

Exercise 3:

Exercise 3: View / 2D & 3D

Exercise 4: It's ready... Prepare and optionally order

Download PCB complete or keep your own

Fabrication / PCB Fabrication – No Generate Gerber

One Click order

Note the price

Colors are neat but add two days

Check out JLCPCB panelize

Default order

Five boards for \$3.50 plus tax!

Not bad but you can get more for your money

Panelizing Methods

Order many small size boards – best edges

Panelize in EasyEDA

ThisIsNotRocketScience panelizer – rough but cheap

JLCPCB panelizing – rows and columns on last page

ThisIsNotRocketScience Panelizer

Not well documented but there are a number of YouTubes. There is no extra charge for fabricating such boards.

https://www2.thisisnotrocketscience.nl/software/pcb-panelizer/

JCLPCB Panelize 2x4

Forty boards for \$9.20 plus tax

Three Recent Orders

PCB Prototype

Order #: Y18-6530726A

Build Time: 3-4 days

5 pcs \$7.70

Product Details

class_pcb_PCB_class_pcb__...

Merchandise Total: \$7.70

Production Completed

Quality Complaint

Shipping Charge: \$1.50

Sales Tax: \$0.76

Order Total: \$9.96

Panelized by JLCPCB – 2 columns – 4 rows Break apart – 40 small boards for under \$10.00

2023-11-16 | W202311160456384

PCB Prototype

Order #: Y16-6530726A

Build Time: 2 days

5 pcs \$3.20

Product Details

555_panels_Y16

Production Completed

(Quality Complaint)

Merchandise Total: \$3.20

Shipping Charge: \$1.50

Order Total: \$4.70

Panelized by Brady with NotRocketScience Panelizer. A little rough but no extra charge.

2023-11-05 | W202311050238404

PCB Prototype

Order #: Y14-6530726A

Build Time: 2 days

5 pcs \$2.00

Product Details

pcb_4_PCB_pcb_4__202311...

Production Completed

Quality Complaint

Merchandise Total: \$2.00

Shipping Charge: \$1.50

Order Total: \$3.50

A basic 100mmx100mm – 4"x4" board Awesome deal!

Another Deal

2023-10-26 | W202310260739638

PCB Prototype

Order #: Y10-6530726A

Build Time: 2 days

30 pcs \$5.70

Product Details

555 Timer_PCB_555 Timer_... Merchandise Total: \$5.70

Production Completed Shipping Charge: \$1.44

Quality Complaint Order Total: \$7.14

30 separate 30mmx25mm boards Nice but should have specified rounded the corners

Brady's Novice Schematic Perfected by a Real Professional

Paul Urbanus - Easy Lab Board

Paul Urbanus Assembly Jig and Board

Zip file contains plans for board, jig and sample Python programs.

https://ldrv.ms/u/s!AtRNaDxYyK1fjK4JcoUYKcEoKxLsw?e=A1hvNm

LT Spice Simulation

Change STD to SIM after upper left logo

Simulation/Simulation Setting 10m = 10 milliseconds

4s = 4 seconds

Simulation/RunYourSimulation

https://u.easyeda.com/join?type=project&key=36d7e9efd856bf73a60&inviter=e7e846ad3f3540746dd

555 Timer Chip – Astable Circuit

Wikipedia: In 2017, it was said that over a billion 555 timers are produced annually by some estimates, and that the design was "probably the most popular integrated circuit ever made".

https://en.wikipedia.org/wiki/555 timer IC

Astable mode examples with common values

Frequency	С	R ₁	R ₂	Duty cycle
0.1 Hz (+0.048%)	100 μF	8.2 kΩ	68 kΩ	52.8%
1 Hz (+0.048%)	10 μF	8.2 kΩ	68 kΩ	52.8%
10 Hz (+0.048%)	1 μF	8.2 kΩ	68 kΩ	52.8%
100 Hz (+0.048%)	100 nF	8.2 kΩ	68 kΩ	52.8%
1 kHz (+0.048%)	10 nF	8.2 kΩ	68 kΩ	52.8%
10 kHz (+0.048%)	1 nF	8.2 kΩ	68 kΩ	52.8%
100 kHz (+0.048%)	100 pF	8.2 kΩ	68 kΩ	52.8%