
September 2025
“By Your Command”

And “git + Github”
Spoken interface to robots
git + github - zero to hero in 60 min

Agenda

● DPRG News - RoboColumbus
● Visitors introduction
● Questions?
● “By Your Command” demo and

further explanation
● git + Github
● Lunch
● Show’n’tell
● University collaboration

git + Github
Basics + some advanced techniques

What is git + Github
● Github keeps a copy of your

repository in the cloud
● git manipulates the local

repository version history
○ Provides for syncing it with

the cloud version
(push/pull/clone
commands)

● Github provides for creating new
cloud repos, and interacting with
optional upstream repos (fork, pull
request)

● Git tracks diffs between versions
○ Diffs of text files keep

commit sizes small
○ binary files supported

(schematics, 3D models)

Why use git + Github? A ton of reasons…
Robotics centrally includes software/firmware. You need to use proper
techniques in its development. (There's some overhead in managing the local,
and optional remote repos.) Git enables good techniques, Here's how:

● Cloud backup of your code saves you if you lose your code folder on your PC.
○ It's a lot harder to delete a github repo than a directory.

● Save intermediate "working states" of your code, and easily get back to them
for testing

● Switch between multiple configs - e.g. between two robot configs, or two
sensor configs

● Avoid "multiple copies of code directories" syndrome.
○ Easily make changes to test something without changing the known-good version (difficult

without multiple copies if not using git)
● Fearless refactoring or trying out new libraries/features.

○ Git encourages bold changes. Start a major refactoring on a branch and abandon it if it
doesn't work out. Safety net gives you confidence to try big changes.

Why use git + Github (cont.)?

● Document changes (vs. documenting lines of code) with comments in the
commit message.
○ Supports long-term project archeology - months or years later you can see not just what you

changed but why.
● Sync your code directory between multiple machines. Get warnings about

conflicting changes between them.
○ Scenarios: same codebase on PC and on Raspberry Pi used for different purposes

● Maintain a "Release" version that's always ready to run, while you develop on
a branch.
○ Helps you quickly isolate whether a problem that arises in development is due to the SW

change or if HW broke
● Maintain version control of HW files (3D cad models, PCB designs etc), as

well as software & firmware.

Tools, Getting Started

Git is multi-platform - Windows, Linux, MacOS, x86 + Arm

● Install git on your platform. Check you have gitk (should come with git)
○ You don’t need the github CLI (gh). Use the website instead.

● If you use vs-code, install the git extension
● If you don’t have a Github account, create one at github.com

○ You’ll have to set up ssh keys and 2FA

http://github.com

Getting Started: Edit .gitconfig in your home directory
The .gitconfig file in your home directory contains global settings.

[user]
 email = paul.bouchier@gmail.com
 name = Paul Bouchier
[alias]
 s = status
 co = checkout
[diff]
 tool = meld
[difftool]
 prompt = false
[difftool "meld"]
 cmd = meld "$LOCAL" "$REMOTE"
[merge]
 tool = meld
[mergetool "meld"]
 cmd = meld "$LOCAL" "$MERGED" "$REMOTE" --output "$MERGED"

Advanced Git Use

● git remote -v # display where the remote repo is
● .gitignore # configure files & directories that should be ignored by git
● git push -f # forced push makes remote match local repo
● git revert (before push & after push) # Back out a commit
● git cherry-pick <hash> # pull a single commit from one branch to another
● git blame <file> # Find out who last changed each line of a file
● git rebase -i HEAD~<n> # Squash n previous commits into a single commit

by rewriting history
● git bisect # Seek to the commit that broke something

Basic Demos
Assumption: You have created an account

● Create & Clone new repo
● Copy some local content into new repo. Edit README.md
● View local repo status

○ git status + vs-code + gitk + git difftool
● Add to staged & commit and push it to github.

Advice:

● Commit when you reach a point that you consider “a significant
accomplishment”, and to which you might want to return

● Push whenever you commit

http://readme.md

Create repo
Browse to github.com/<your_username>

1. Click “Repositories” tab
2. Click “New”

In the “Create New” page

1. Enter a name for your repo
2. Click “Add REAME” on
3. Click “Create repository

The page changes to show the contents of
your new repo with some default files.

You have now created a repo in the cloud.
Now you need to clone it onto your PC

http://github.com/

Clone Repo onto your PC
This procedure works for any repo on
github, not just one you created

1. On the github repo page, click
the arrow next to the “Code”
button

2. Click the “copy” icon next to
the URL to copy the URL you
will clone onto your PC

3. Fork any repo with this button

Open a terminal window

1. cd to the folder you want to
clone into (e.g. src)

2. Type “git clone <paste URL>
3. Show contents of

<repo_name> folder

You have now cloned the remote repo
into a local copy having the same
folder name as your repo

Making and inspecting
changes - gitk
Copy some local content into
new repo. Edit README.md

Launch gitk

Observe
1. Local and remote master are the only commit, and are the same
2. There are uncommitted changes
3. Shaded commit comment shows selected commit. Hash in SHA1 ID
4. Lower right pane shows files changed in selected commit
5. Lower left pane shows changes to each file that was changed

Resize gitk panes, window. Click on other lines in git history. Run gitk in other
repos you have downloaded.

http://readme.md

Inspecting changes - git difftool
In command window, type “git difftool”

Observe meld shows changes to each modified file

Inspecting changes
- vs-code
Launch vs-code in the repo.

1. Select the git extension
2. You are on the master

branch and it has been
modified

3. One file change has been
modified

4. The other file change is
uncommitted

5. Actions are available to
pull/push

6. You can commit these
changes

Disclaimer: I don’t use vs-code for git, and have no experience with
it. I prefer command line + gitk

Inspecting changes - CLI
In the command window:

1. Type “git status”
2. Observe 1 file changed, not

staged for commit, with
instructions for unstaging

3. Observe an untracked folder
(which contains our new file)
with instructions for adding

Stage, commit & push
In the CLI, type:

1. git add <new
files/folders>. Update
gitk and check: File →
Reload

2. git commit -a -m
“<comment>”. Update
gitk and check

3. Git push. Update gitk and
check

References

Repo with this talk’s slides: https://github.com/dprg/2025_git_talk

https://github.com/dprg/2025_git_talk

Show’n’tell

